Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao, ${ }^{\text {a }}$ Li-Hua Huo ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a College of Chemistry and Chemical }}$ Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.051$
$w R$ factor $=0.139$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

A monoclinic modification of N-(3,4-dibenzoyl-2,5-dimethylpyrrol-1-yl)-4-methoxybenzamide

The molecule of the title compound, $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, in the monoclinic modification shows no significant differences in bond dimensions from those in the reported orthorhombic modification [Gao et al. (2004). Acta Cryst. E60, o1733-o1735]. Two molecules are linked across a center of inversion by a pair of amide-carbonyl hydrogen bonds $[2.867$ (2) A $]$.

Comment

N -(Dibenzoyldimethylpyrrol-1-yl)-4-methoxybenzamide represents a pyrrole that is severely crowded owing to substituents on all atoms of the five-membered ring. A previous study had documented the compound belonging to the orthorhombic crystal system (Gao et al., 2004). The synthesis, albeit in a slightly different solvent, afforded the monoclinic modification, (I) (Fig. 1). It is not clear whether the two modifications were obtained in the same reaction, or whether the solvent itself governed the crystallization. The principal bond dimensions are not significantly different in the two modifications; the monoclinic modification is marginally denser $\left(D_{x}=1.263 \mathrm{Mg} \mathrm{m}^{-3}\right)$ than the orthorhombic modification ($D_{x}=1.250 \mathrm{Mg} \mathrm{m}^{-3}$).

(I)

Experimental

Glacial acetic acid (3 ml) was added to an ethanol solution (3 ml) of benzoylacetone ($21.1 \mathrm{~g}, 0.13 \mathrm{~mol}$) and 4-methoxybenzoylhydrazine $(16.2 \mathrm{~g}, 0.10 \mathrm{~mol})$ in the condensation for the α, β-diketone with the hydrazine. The mixture was refluxed for 3 h . The pale yellow title compound was isolated as crystals when the filtered solution was set aside for several days. Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 74.32, H 5.35 , N 6.19%; found: C 74.60 , H 5.30, N 6.11%. In the previously reported synthesis (Gao et al., 2004), methanol was used as solvent.

Crystal data

```
\(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\)
\(M_{r}=452.49\)
Monoclinic, \(P 2_{d} / c\)
\(a=15.643\) (3) A
\(b=10.258\) (2) \(\AA\)
\(c=16.563\) (3) \(\AA\)
\(\beta=116.49(3)^{\circ}\)
\(V=2378.7\) ( 8 ) \(\AA^{3}\)
\(Z=4\)
```

$$
\begin{aligned}
& D_{x}=1.263 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 20917
reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, yellow
$0.40 \times 0.27 \times 0.21 \mathrm{~mm}$

Received 21 October 2004 Accepted 26 October 2004 Online 6 November 2004

Data collection

Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.660, T_{\text {max }}=0.982$
22118 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.139$
$S=1.03$
5414 reflections
314 parameters
H atoms treated by a mixture of independent and constrained refinement

5414 independent reflections 4210 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-20 \rightarrow 20$
$k=-13 \rightarrow 13$
$l=-20 \rightarrow 21$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0708 P)^{2}\right. \\
& +0.5812 P]
\end{aligned}
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{N} 2$	$1.386(2)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.468(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.374(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.376(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.376(2)$	$\mathrm{C} 3-\mathrm{C} 14$	$1.478(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.441(2)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.486(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$112.2(1)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$124.6(1)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$124.7(1)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$107.6(1)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2$	$123.1(1)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 14$	$123.9(1)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$106.0(1)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 14$	$128.5(1)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$120.2(1)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$106.3(1)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$133.3(1)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$132.6(1)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$107.9(1)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6$	$121.0(1)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$125.9(1)$		

H atoms bonded to C atoms were placed in calculated positions $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, which were rotated to fit the electron density] and included in the refinement in the riding-model approximation. The amide H atom was refined isotropically.

ORTEPII (Johnson, 1976) plot of (I), with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

Gao, S., Huo, L.-H., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, o1733o1735.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

